(本小题满分10分)
已知椭圆的中心在原点,焦点在轴上,离心率为
,且经过点
,直线
交椭圆于不同的两点A,B.
(1)求椭圆的方程;
(2)求的取值范围。
第一小题3分,第二小题5分,第三小题6分.
(1)已知函数是奇函数,
为常数,求实数
的值;
(2)若,且
,求
的解析式;
(3)对于(2)中的,若
对
恒成立,求实数
的取值范围.
如图,有一块扇形草地OMN,已知半径为R,,现要在其中圈出一块矩形场地ABCD作为儿童乐园使用,其中点A、B在弧MN上,且线段AB平行于线段MN
(1)若点A为弧MN的一个三等分点,求矩形ABCD的面积S;
(2)当A在何处时,矩形ABCD的面积S最大?最大值为多少?
如图,正四棱柱的底面边长为1,异面直线
与
所成角的大小为
,求:
(1)线段到底面
的距离;
(2)三棱椎的体积。
已知函数,
.
(1)设.
① 若函数在
处的切线过点
,求
的值;
② 当时,若函数
在
上没有零点,求
的取值范围;
(2)设函数,且
,求证:当
时,
.
设数列是各项均为正数的等比数列,其前
项和为
,若
,
.
(1)求数列的通项公式;
(2)对于正整数(
),求证:“
且
”是“
这三项经适当排序后能构成等差数列”成立的充要条件;
(3)设数列满足:对任意的正整数
,都有
,且集合
中有且仅有3个元素,试求
的取值范围.