.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量X(吨),与相应的生产能耗Y(吨标准煤)的几组对照数据。
X |
3 |
4 |
5 |
6 |
Y |
2.5 |
3 |
4 |
4.5 |
(1) 请画出上表数据的数点图
(2) 请根据上表提供的数据,求线性回归的方程Y=x+
(3) 已知该厂技改前100吨甲产品的生产能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
()
已知函数f(x)=cos(+x)·cos(
-x),g(x)=
sin2x-
.
(1)求函数f(x)的最小正周期;
(2)求函数h(x)=f(x)-g(x)的最大值,并求使h(x)取得最大值的x的集合.
已知α,β∈(0,π),且tan(α-β)=,tanβ=-
,求2α-β的值.
已知函数f(x)=6cos2+
sinωx-3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B、C为图象与x轴的交点,且△ABC为正三角形.
(1)求ω的值及函数f(x)的值域;
(2)若f(x0)=,且x0∈(-
,
),求f(x0+1)的值.
已知函数f(x)=4cosωx·sin(ωx+)(ω>0)的最小正周期为π.
(1)求ω的值;
(2)讨论f(x)在区间[0,]上的单调性.
已知α,β∈(0,π),且tanα=2,cosβ=-.
(1)求cos2α的值;
(2)求2α-β的值.