游客
题文

已知是数列的前项和,),且
(1)求的值,并写出的关系式;
(2)求数列的通项公式及的表达式;
3)我们可以证明:若数列有上界(即存在常数,使得对一切 恒成立)且单调递增;或数列有下界(即存在常数,使得对一切恒成立)且单调递减,则存在.直接利用上述结论,证明:存在.

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

已知抛物线与双曲线有公共焦点,点是曲线在第一象限的交点,且
(1)求双曲线的方程;
(2)以双曲线的另一焦点为圆心的圆与直线相切,圆.过点作互相垂直且分别与圆、圆相交的直线,设被圆截得的弦长为被圆截得的弦长为,问:是否为定值?如果是,请求出这个定值;如果不是,请说明理由.

是各项都为正数的等比数列,是等差数列,且.
(1)求数列的通项公式;
(2)设数列的前项和为,求数列的前项和.

如图,在底面为平行四边形的四棱柱中,底面.

(1)求证:平面平面
(2)若,求四棱锥的体积.

某小组共有五位同学,他们的身高(单位:米)以及体重指
标(单位:千克/米2)如下表所示:







身高





体重指标





(1)从该小组身高低于的同学中任选人,求选到的人身高都在以下的概率;
(2)从该小组同学中任选人,求选到的人的身高都在以上且体重指标都在中的概率.

已知平面直角坐标系上的三点为坐标原点,向量与向量共线.
(1)求的值;
(2)求的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号