在平面直角坐标系中,经过点
且斜率为
的直线
与椭圆
有两个不同的交点
.
(1)求实数的取值范围;
(2)设椭圆与轴正半轴,
轴正半轴的交点分别为
,是否存在常数
,使得向量
共线?如果存在,求
的值;如果不存在,请说明理由.
(本小题满分12分)某公园计划建造一个室内面积为800m2的矩形花卉温室.在温室内,沿左、右两侧与后侧内墙各保留1m宽的通道。沿前侧内墙保留3m宽的空地,中间矩形内种植花卉.当矩形温室的边长各为多少时,花卉的种植面积最大?最大种植面积是多少?
(本小题满分12分)在△ABC中,BC=,AC=3,sinC=2sinA.
(Ⅰ)求边长AB的值;
(Ⅱ)求△ABC的面积.
(本小题满分10分)给定两个命题,p:对任意实数x都有+ax+1>0恒成立;
q:函数y=(a>0且a≠1)为增函数,若p假q真,求实数a的取值范围.
(本小题满分14分)
已知函数,其中e是自然数的底数,
.
(1)当时,解不等式
;
(2)当时,求正整数k的值,使方程
在[k,k+1]上有解;
(3)若在[-1,1]上是单调增函数,求
的取值范围.
(本小题满分13分)
在数列中,已知
.
(Ⅰ)求数列的通项公式;
(Ⅱ)求证:数列是等差数列;
(Ⅲ)设数列满足
,求
的前n项和
.