游客
题文

(本题满分10分)

⑴如图,已知∠AOB=90º,∠BOC=30º,OM平分∠AOB,ON平分∠BOC,求∠MON的度数;
⑵如果⑴中∠AOB=α,∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;
从⑴、⑵的结果中能得出什么结论?

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

已知关于x的一元二次方程,其中a、b、c分别为△ABC三边的长.
(1)如果是方程的根,试判断△ABC的形状,并说明理由;
(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;
(3)如果△ABC是等边三角形,试求这个一元二次方程的根.

解方程
(1)
(2)

如图,在平面直角坐标系中,矩形OABC的顶点A(0,3),C(,0).将矩形OABC绕原点顺时针旋转90°,得到矩形.设直线轴交于点M、与轴交于点N,抛物线的图象经过点C、M、N.解答下列问题:

(1)分别求出直线和抛物线所表示的函数解析式;
(2)将△MON沿直线MN翻折,点O落在点P处,请你判断点P是否在抛物线上,说明理由.
(3)将直线MN向上平移,使它与抛物线只有一个交点,求此时直线的解析式.
(4)点P是x轴上方的抛物线上的一动点,连接P M,P N ,设所得△PMN的面积为S.
①求S的取值范围;
②若△PMN的面积S为整数,则这样的△PBC共有个.

如图,在平面直角坐标系中,⊙M与x轴交于A、B两点,AC是⊙M的直径,过点C的直线交x轴于点D,连接BC,已知点M的坐标为(0,),直线CD的函数解析式为y=-x+5

(1)求点D的坐标和BC的长;
(2)求点C的坐标和⊙M的半径;
(3)求证:CD是⊙M的切线.

已知:二次函数(m为常数).
(1)若这个二次函数的图象与x轴只有一个公共点A,且A点在x轴的正半轴上.
①求m的值;
②四边形AOBC是正方形,且点B在y轴的负半轴上,现将这个二次函数的图象平移,使平移后的函数图象恰好经过B,C两点,求平移后的图象对应的函数解析式;
(2)当0≤≤2时,求函数的最小值(用含m的代数式表示).

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号