(本小题满分16分)已知函数的图象在
上连续不断,定义:
,
其中,表示函数
在区间上的最小值,
表示函数
在区间上的最大值.若存在最小正整数
,使得
对任意的
成立,则称函数为区间
上的“
阶收缩函数”.
(1)若,试写出
的表达式;
(2)已知函数试判断
是否为
上的“
阶收缩函数”,如果是,求出相应的
;如果不是,请说明理由;
(3)已知函数
是
上的2阶收缩函数,求
的取值范围.
(本小题满分7分)选修4—5:不等式选讲
已知正数满足
,
(Ⅰ)求证:;(Ⅱ) 求
的最小值.
(本小题满分7分)《选修4-4:坐标系与参数方程》
在直角坐标系xOy中,圆C的参数方程为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求圆C的极坐标方程;
(Ⅱ)直线的极坐标方程是
,射线
与圆C的交点为O,P,与直线
的交点为Q,求线段PQ的长.
(本小题满分7分)选修4—2:矩阵与变换
若二阶矩阵满足
.
(Ⅰ)求二阶矩阵;
(Ⅱ)把矩阵所对应的变换作用在曲线
上,求所得曲线的方程.
(本小题满分14分)已知函数(其中
,e是自然对数的底数,e=2.71828…).
(Ⅰ)当时,求函数
的极值;
(Ⅱ)若恒成立,求实数a的取值范围;
(Ⅲ)求证:对任意正整数n,都有.
在平面直线坐标系XOY中,给定两点A(1,0),B(0,-2),点C满足,其中
,且
.
(1)求点C的轨迹方程.
(2)设点C的轨迹与双曲线(
)相交于M,N两点,且以MN为直径的圆经过原点,求证:
是定值.
(3)在(2)条件下,若双曲线的离心率不大于,求该双曲线实轴的取值范围.