(本小题满分14分)如图,在直三棱柱中,
,
,
是
的中点.
(Ⅰ)求证:∥平面
;
(Ⅱ)求二面角的余弦值;
(Ⅲ)试问线段上是否存在点
,使
与
成
角?若存在,确定
点位置,若不存在,说明理由.
(本小题满分12分)若圆与圆
交点为A,B,求:(1) 线段AB的垂直平分线方程.
(2) 线段AB所在的直线方程.
(3) 求AB的长.
选修4—5:不等式选讲
已知,若不等式
恒成立,求实数
的取值范围.
选修4-1:几何证明选讲
如图,已知,过顶点
的圆与边
切于
的中点
,与边
分别交于点
,且
,点
平分
.求证:
.
四、选做题(本小题满分10分。请考生22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分)
22.选修4—4:坐标系与参数方程
求直线(
)被曲线
所截的弦长.
(本小题满分12分)
已知函数
(Ⅰ)若函数是定义域上的单调增函数,求实数
的最小值;
(Ⅱ)方程有两个不同的实数解,求实数
的取值范围;
(Ⅲ)在函数的图象上是否存在不同两点
,线段
的中点的横坐标为
,有
成立?若存在,请求出
的值;若不存在,请说明理由.