(本小题满分13分)已知数列.如果数列
满足
,
,其中
,则称
为
的“衍生数列”.
(Ⅰ)若数列的“衍生数列”是
,求
;
(Ⅱ)若为偶数,且
的“衍生数列”是
,证明:
的“衍生数列”是
;
(Ⅲ)若为奇数,且
的“衍生数列”是
,
的“衍生数列”是
,….依次将数列
,
,
,…的第
项取出,构成数列
.证明:
是等差数列.
在中,角A,B,C的对边分别为a,b,c,若
.
(1)求B;
(2)设函数,求函数
上的取值范围.
在无穷数列中,
,对于任意
,都有
,
. 设
, 记使得
成立的
的最大值为
.
(1)设数列为1,3,5,7,
,写出
,
,
的值;
(2)若为等比数列,且
,求
的值;
(3)若为等差数列,求出所有可能的数列
.
设分别为椭圆
的左、右焦点,斜率为
的直线
经过右焦点
,且与椭圆W相交于
两点.
(1)求的周长;
(2)如果为直角三角形,求直线
的斜率
.
已知函数,其中
.
(1)若,求函数
的定义域和极值;
(2)当时,试确定函数
的零点个数,并证明.
如图,在正方体中,
,
为
的中点,
为
的中点.
(1)求证:平面平面
;
(2)求证:平面
;
(3)设为正方体
棱上一点,给出满足条件
的点
的个数,并说明理由.