已知定点A(a,O)( a >0),B为x轴负半轴上的动点.以AB为边作菱形ABCD,使其两对角线的交点恰好落在y轴上.
(I)求动点D的轨迹E的方程;
(Ⅱ)过点A作直线l与轨迹E交于P、Q两点,设点R (- a,0),问当l绕点A转动时,∠PRQ是否可以为钝角?请给出结论,并加以证明.
已知某公司生产品牌服装的年固定成本是10万元,每生产千件,须另投入2.7万元,设该公司年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为
R(x)万元,且
(1)写出年利润W(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获利润最大?
(注:年利润=年销售收入-年总成本)
设a为实数,函数
(Ⅰ)求的极值.
(Ⅱ)当a在什么范围内取值时,曲线轴仅有一个交点.
设,
为常数).当
时,
,且
为
上的奇函数.
⑴ 若,且
的最小值为
,求
的表达式;
⑵ 在 ⑴ 的条件下,在
上是单调函数,求
的取值范围.
已知定义域为R的二次函数f(x)的最小值为0,且有,直线
图象截得的弦长为
,数列
,
⑴ 求函数f(x)的解析式;
⑵ 求数列的通项公式;
⑶ 设的最值及相应的n.