(本小题满分12分)
已知三棱柱中,各棱长均为2,平面
⊥平 面
,
.
(1)求证:⊥平面
;
(2)求二面角的大小;
(本小题满分14分)
如图4,在三棱柱中,△
是边长为
的等边三角形,
平面
,
,
分别是
,
的中点.
(1)求证:∥平面
;
(2)若为
上的动点,当
与平面
所成最大角的正切值为
时,
求平面与平面
所成二面角(锐角)的余弦值.
(本小题满分12分)
甲,乙,丙三位学生独立地解同一道题,甲做对的概率为,乙,丙做对的概率分别为
,
(
>
),且三位学生是否做对相互独立.记
为这三位学生中做对该题的人数,其分布列为:
![]() |
0 |
1 |
2 |
3 |
![]() |
![]() |
![]() |
![]() |
![]() |
(1) 求至少有一位学生做对该题的概率;
(2) 求,
的值;
(3) 求的数学期望.
(本小题满分12分)
已知函数(其中
,
,
)的最大值为2,最小正周
期为.
(1)求函数的解析式;
(2)若函数图象上的两点
的横坐标依次为
,
为坐标原点,求△
的
面积.
如图,已知椭圆=1(a>b>0),F1、F2分别为椭圆的左、右焦点,A为椭圆的上的顶点,直线AF2交椭圆于另 一点B.
(1)若∠F1AB=90°,求椭圆的离心率;
(2)若=2
,
·
=
,求椭圆的方程.
某零售店近五个月的销售额和利润额资料如下表:
商店名称 |
A |
B |
C |
D |
E |
销售额![]() |
3 |
5 |
6 |
7 |
9 9 |
利润额![]() |
2 |
3 |
3 |
4 |
5 |
(1)画出散点图.观察散点图,说明两个变量有怎样的相关关系;
(2)用最小二乘法计算利润额关于销售额
的回归直线方程;
(3)当销售额为4(千万元)时,利用(2)的结论估计该零售店的利润额(百万元).