某零售店近五个月的销售额和利润额资料如下表:
商店名称 |
A |
B |
C |
D |
E |
销售额![]() |
3 |
5 |
6 |
7 |
9 9 |
利润额![]() |
2 |
3 |
3 |
4 |
5 |
(1)画出散点图.观察散点图,说明两个变量有怎样的相关关系;
(2)用最小二乘法计算利润额关于销售额
的回归直线方程;
(3)当销售额为4(千万元)时,利用(2)的结论估计该零售店的利润额(百万元).
在某校组织的一次篮球定点投篮测试中,规定每人最多投次,每次投篮的结果相互独立.在
处每投进一球得
分,在
处每投进一球得
分,否则得
分. 将学生得分逐次累加并用
表示,如果
的值不低于
分就认为通过测试,立即停止投篮,否则继续投篮,直到投完三次为止.投篮的方案有以下两种:方案1:先在
处投一球,以后都在
处投;方案2:都在
处投篮.甲同学在
处投篮的命中率为
,在
处投篮的命中率为
.
(Ⅰ)甲同学选择方案1.
求甲同学测试结束后所得总分等于4的概率;
求甲同学测试结束后所得总分的分布列和数学期望
;
(Ⅱ)你认为甲同学选择哪种方案通过测试的可能性更大?说明理由.
已知函数,
(1) 当时,求曲线
在
处的切线方程;
(2)求函数的单调区间.
有一枚正方体骰子,六个面分别写1、2、3、4、5、6的数字,规定“抛掷该枚骰子得到的数字是抛掷后,面向上的那一个数字”.已知和
是先后抛掷该枚骰子得到的数字,函数
(1)若先抛掷骰子得到的数字是3,求再次抛掷骰子时,使函数有零点的概率;
(2)求函数在区间(-3,+∞)上是增函数的概率.
已知定义在上的函数
,其中
为常数.
(1)若是函数
的一个极值点,求
的值;
(2)若函数在区间
上是增函数,求
的取值范围.
已知数列:
(1)观察规律,写出数列的通项公式,它是个什么数列?
(2)若,设
,求
。
(3)设,
为数列
的前
项和,求
。