在某校组织的一次篮球定点投篮测试中,规定每人最多投次,每次投篮的结果相互独立.在
处每投进一球得
分,在
处每投进一球得
分,否则得
分. 将学生得分逐次累加并用
表示,如果
的值不低于
分就认为通过测试,立即停止投篮,否则继续投篮,直到投完三次为止.投篮的方案有以下两种:方案1:先在
处投一球,以后都在
处投;方案2:都在
处投篮.甲同学在
处投篮的命中率为
,在
处投篮的命中率为
.
(Ⅰ)甲同学选择方案1.
求甲同学测试结束后所得总分等于4的概率;
求甲同学测试结束后所得总分的分布列和数学期望
;
(Ⅱ)你认为甲同学选择哪种方案通过测试的可能性更大?说明理由.
(本小题满分10分)
已知函数,
.
(1)若关于的方程
只有一个实数解,求实数
的取值范围;
(2)若当时,不等式
恒成立,求实数
的取值范围.
(本小题满分10分)
如图,已知圆是
的外接圆,
,
是
边上的高,
是圆
的直径.过点
作圆
的切线交
的延长线于点
.
(1)求证:;
(2)若,
,求
的长.
(本小题满分12分)
已知函数,
.
(1)若在
上的最大值为
,求实数
的值;
(2)若对任意,都有
恒成立,求实数
的取值范围;
(3)在(1)的条件下,设,对任意给定的正实数
,曲线
上是否存在两点
、
,使得
是以
(
为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在
轴上?请说明理由.
(本题小满分12分)
如图,在直角梯形中,
,
,
平面
,
,
.
(1)求证:平面
;
(2)在直线上是否存在点
,使二面角
的大小为
?若存在,求出
的长;若不存在,说明理由.
(本小题满分12分)
已知等差数列的公差为
,前
项和为
,且
.
(1)求数列的通项公式
与前
项和
;
(2)将数列的前四项抽取其中一项后,剩下三项按原来顺序恰为等比数列
的前三项,记数列
的前
项和为
,若存在
,使得对任意
,总有
成立,求实数
的取值范围.