游客
题文

在某校组织的一次篮球定点投篮测试中,规定每人最多投次,每次投篮的结果相互独立.在处每投进一球得分,在处每投进一球得分,否则得分. 将学生得分逐次累加并用表示,如果的值不低于分就认为通过测试,立即停止投篮,否则继续投篮,直到投完三次为止.投篮的方案有以下两种:方案1:先在处投一球,以后都在处投;方案2:都在处投篮.甲同学在处投篮的命中率为,在处投篮的命中率为.
(Ⅰ)甲同学选择方案1.
求甲同学测试结束后所得总分等于4的概率;
求甲同学测试结束后所得总分的分布列和数学期望
(Ⅱ)你认为甲同学选择哪种方案通过测试的可能性更大?说明理由.

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

(本小题满分12分)已知=(2,1),=(1,7),=(5,1).设M是直线OP上的一点(其中O为坐标原点),当取最小值时:
(1)求
(2)设∠AMB=θ,求cosθ的值.

(本小题满分12分)
已知点A、B、C的坐标分别为A(3,0)、B(0,3)、C(cosα,sinα),α∈(,).
(1)若||=||,求角α的值;
(2)若·=-1,求的值.

(本小题满分12分)已知函数y=cos2x+sinxcosx+1,x∈R.
(1)求它的振幅、周期和初相;
(2)用五点法作出它的简图;
(3)该函数的图象可由y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到的?

(本小题满分12分)
已知f(x)=sin(2x+)+sin(2x-)+2cos2x+a,当x∈[-,]时,f(x)的最小值为-3,求α的值.

(本小题满分12分)
已知向量=(3,-4),=(6,-3),=(5-m,-(3+m)).
(1)若点A、B、C能构成三角形,求实数m应满足的条件;
(2)若△ABC为直角三角形,且∠A为直角,求实数m的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号