选修4-5:不等式选讲
已知,
.
(1)求证:,
;
(2)若,求证:
.
(本小题满分12分)
已知圆的公共点的轨迹为曲线
,且曲线
与
轴的正半轴相交于点
.若曲线
上相异两点
、
满足直线
,
的斜率之积为
.
(Ⅰ)求的方程;
(Ⅱ)证明直线恒过定点,并求定点的坐标;
(Ⅲ)求的面积的最大值.
(本小题满分12分)某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.把符合条件的1000名志愿者按年龄分组:第1组[20,25)、第2组[25,30)、第3组[30,35)、第4组[35,40)、第5组[40,45],得到的频率分布直方图如图所示:
(1)若从第3、4、5组中用分层抽样的方法抽取12名志愿者参加广场的宣传活动,应从第3、4、5组各抽取多少名志愿者?
(2)在(1)的条件下,该市决定在这12名志愿者中随机抽取3名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率;
(3)在(2)的条件下,若ξ表示抽出的3名志愿者中第3组的人数,求ξ的分布列和数学期望.
(本小题满分12分)如图,直四棱柱的底面是菱形,侧面是正方形,
,
是棱
的延长线上一点,经过点
、
、
的平面交棱
于点
,
.
(1)求证:平面平面
;
(2)求二面角的平面角的余弦值.
(本小题满分12分)在中,内角
对边分别为
,且
.
(Ⅰ)求角的大小;
(Ⅱ)若,求
的值.
(本小题满分7分)选修4—5:不等式选讲
已知关于的不等式
的解集为
.
(1)求的值;
(2)求函数的最大值,以及取得最大值时
的值.