((本小题满分10分)选修4—4:坐标系与参数方程
在直角坐标系xoy中,已知曲线C的参数方程是(
是参数),现
以原点O为极点,x轴正半轴为极轴建立极坐标系,
⑴写出曲线C的极坐标方程。
⑵如果曲线E的极坐标方程是,曲线C、E相交
于A、B两点,求
.
已知函数定义域是
,且
,
,当
时,
.
(1)证明:为奇函数;
(2)求在
上的表达式;
(3)是否存在正整数,使得
时,
有解,若存在求出
的值,若不存在说明理由.
(原创)已知焦点在轴上,中心在坐标原点的椭圆C经过点
(Ⅰ)求椭圆C的短轴长的取值范围;
(Ⅱ)若椭圆C的离心率为,且直线
分别切椭圆C与圆
(其中
)于A、B两点,求|AB|的最大值.
如图所示,在边长为12的正方形中,点
在线段
上,且
,作
,分别交
于点
,
.作
,分别交
于点
,
.将该正方形沿
折叠,使得
与
重合,构成如图的三棱柱
.
(1)求证:平面
;
(2)求四棱锥的体积.
(本小题满分15分)已知数列是各项均为正数的等差数列,其中
,且
成等比数列;数列
的前
项和为
,满足
.
(1)求数列、
的通项公式;
(2)如果,设数列
的前
项和为
,是否存在正整数
,使得
成立,若存在,求出
的最小值,若不存在,说明理由.
在中,角
所对的边为
,且满足
(1)求角的值;
(2)若且
,求
的取值范围.