在数列
中,若
(
,
,
为常数),则称
为
数列.
(1)若数列
是
数列,
,
,写出所有满足条件的数列
的前
项;
(2)证明:一个等比数列为
数列的充要条件是公比为
或
;
(3)若
数列
满足
,
,
,设数列
的前
项和为
.是否存在
正整数
,使不等式
对一切
都成立?若存在,求出
的值;
若不存在,说明理由.
已知椭圆
:
的右焦点为
,短轴的一个端点
到
的距离等于焦距.
(1)求椭圆
的方程;
(2)过点
的直线
与椭圆
交于不同的两点
,
,是否存在直线
,使得△
与△
的面积比值为
?若存在,求出直线
的方程;若不存在,说明理由.
已知函数
,其导函数
的图象经过点
,
,如图所示.
(1)求
的极大值点;
(2)求
的值;
(3)若
,求
在区间
上的最小值.
如图,三棱柱
中,
平面
,
,
,
.以
,
为邻边作平行四边形
,连接
和
.
(1)求证:
∥平面
;
(2)求直线
与平面
所成角的正弦值;
(3)线段
上是否存在点
,使平面
与平面
垂直?若存在,求出
的长;若
不存在,说明理由.
为加快新能源汽车产业发展,推进节能减排,国家对消费者购买新能源汽车给予补贴,其中对纯电动乘用车补贴标准如下表:
| 新能源汽车补贴标准 |
|||
| 车辆类型 |
续驶里程 (公里) |
||
![]() |
![]() |
![]() |
|
| 纯电动乘用车 |
万元/辆 |
万元/辆 |
万元/辆 |
某校研究性学习小组,从汽车市场上随机选取了
辆纯电动乘用车,根据其续驶里程
(单次充电后能行驶的最大里程)作出了频率与频数的统计表:
| 分组 |
频数 |
频率 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
| 合计 |
![]() |
![]() |
(1)求
,
,
,
的值;
(2)若从这
辆纯电动乘用车中任选
辆,求选到的
辆车续驶里程都不低于
公里的概率;
(3)若以频率作为概率,设
为购买一辆纯电动乘用车获得的补贴,求
的分布列和数学期望
.