(本小题满分12分)
某城市有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为△ABC、△ABD,经测量AD=BD=14,BC=10,AC=16,∠C=∠D.
(I)求AB的长度;
(Ⅱ)若建造环境标志的费用与用地面积成正比,不考虑其他因素,小李、小王谁的设计使建造费用最低,请说明理由.
已知, 且
,求证:
(本小题满分10分)
已知圆O:,圆C:
,由两圆外一点
引两圆切线PA、PB,切点分别为A、B,满足|PA|=|PB|.
(Ⅰ)求实数a、b间满足的等量关系;
(Ⅱ)求切线长|PA|的最小值;
(Ⅲ)是否存在以P为圆心的圆,使它与圆O相内切并且与圆C相外切?若存在,求出圆P的方程;若不存在,说明理由.
(本小题满分10分)
已知,
,点
的坐标为
(1)当时,求
的坐标满足
的概率。
(2)当时,求
的坐标满足
的概率。
(本小题满分10分)
用秦九韶算法演算出多项式在
时的值.
(必须写出相应的完整步骤,只写答案不给分,缺少相应步骤将扣除相应的步骤分)
(本题共两个小题,每题5分,满分10分)
① 已知不等式的解集是
,求
的值;
② 若函数的定义域为
,求实数
的取值范围.