如图所示,在正方形区域abcd内充满方向垂直纸面向里的、磁感应强度为B的匀强磁场。在t=0时刻,一位于ad边中点o的粒子源在abcd平面内发射出大量的同种带电粒子,所有粒子的初速度大小相同,方向与od边的夹角分布在0~180°范围内。已知沿od方向发射的粒子在
时刻刚好从磁场边界cd上的p点离开磁场,粒子在磁场中做圆周运动的半径恰好等于正方形边长L,粒子重力不计,求:
(1)粒子的比荷q/m;
(2)假设粒子源发射的粒子在0~180°范围内均匀分布,此时刻仍在磁场中的粒子数与粒子源发射的总粒子数之比;
(3)从粒子发射到全部粒子离开磁场所用的时间。(若角度不特殊时可以用反三角表示,如:已知sinθ=0.3,则θ=arcsin0.3)
质量为m=1kg的小物块轻轻放在水平匀速运动的传送带上的P点,随传送带运动到A点后水平抛出,小物块恰好无碰撞的沿圆弧切线从B点进入竖直光滑圆孤轨道下滑。B.C为圆弧的两端点,其连线水平。已知圆弧半径R=1.0m圆弧对应圆心角,轨道最低点为O,A点距水平面的高度h=0.8m。小物块离开C点后恰能无碰撞的沿固定斜面向上运动,0.8s后经过D点,物块与斜面间的滑动摩擦因数为
=
(g=10m/s2,sin37°=0.6,cos37°=0.8)试求:
(1)小物块离开A点的水平初速度v1
(2)假设小物块与传送带间的动摩擦因数为0.3,传送带的速度为5m/s,则PA间的距离是多少?
(3)小物块经过O点时对轨道的压力
(4)斜面上CD间的距离
如图所示,小球甲从倾角θ=30°的光滑斜面上高h=5 cm的A点由静止释放,小球甲沿斜面向下做匀加速直线运动,加速度大小是5 m/s2,同时小球乙自C点以速度v0沿光滑水平面向左匀速运动,C点与斜面底端B处的距离L=0.4 m.甲滑下后能沿斜面底部的光滑小圆弧平稳地朝乙追去,甲释放后经过t=1 s刚好追上乙,求乙的速度v0.
如图(a)所示,在倾角的光滑固定斜面上有一劲度系数k=100N/m的轻质弹簧,弹簧下端固定在垂直于斜面的挡板上,弹簧上端拴接一质量m=2 kg的物体,初始时物体处于静止状态。取g=10 m/s2。
(a)(b)(c)
(1)求此时弹簧的形变量x0;
(2)现对物体施加沿斜面向上的拉力F,拉力F的大小与物体位移x的关系如图(b)所示,设斜面足够长。
a.分析说明物体的运动性质并求出物体的速度v与位移x的关系式;
b.若物体位移为0.1m时撤去拉力F,在图(c)中做出此后物体上滑过程中弹簧弹力f的大小随形变量的函数图像;并且求出此后物体沿斜面上滑的最大距离xm以及此后运动的最大速度vm。
质量为m的卫星发射前静止在地球赤道表面。假设地球可视为质量均匀分布的球体,半径为R。
(1)已知地球质量为M,自转周期为T,引力常量为G。求此时卫星对地表的压力N的大小;
(2)卫星发射后先在近地轨道上运行(轨道离地面的高度可以忽略不计),运行的速度大小为v1,之后经过变轨成为地球的同步卫星,此时离地面高度为H,运行的速度大小为v2。
a.求比值;
b.若卫星发射前随地球一起自转的速度大小为v0,通过分析比较v0、 v1、v2三者的大小关系。
某游乐设施如图所示,由半圆形APB和直线BC组成的细圆管轨道固定在水平桌面上(圆半径比细管内径大得多),轨道内壁光滑。已知APB部分的半径R=0.8 m,BC段长L=1.6m。弹射装置将一质量m=0.2kg的小球(可视为质点)以水平初速度v0从A点弹入轨道,小球从C点离开轨道水平抛出,落地点D离C点的水平距离为s=1.6m,桌子的高度h=0.8m,不计空气阻力,取g=10m/s2。求:
(1)小球水平初速度v0的大小;
(2)小球在半圆形轨道上运动时的角速度ω以及从A点运动到C点的时间t;
(3)小球在半圆形轨道上运动时细圆管对小球的作用力F的大小。