(本小题满分13分)已知椭圆:
的右焦点为
,离心率为
.
(Ⅰ)求椭圆的方程及左顶点
的坐标;
(Ⅱ)设过点的直线交椭圆
于
两点,若
的面积为
,求直线
的方程.
设函数.
(1)当时,证明:函数
不是奇函数;
(2)设函数是奇函数,求
与
的值;
(3)在(2)条件下,判断并证明函数的单调性,并求不等式
的解集.
已知某公司生产品牌服装的年固定成本为10万元,每生产千件,须另投入2.7万元,设该公司年内共生产品牌服装千件并全部销售完,每千件的销售收入为
万元,且
.
(1)写出年利润(万元)关于年产量
(千件)的函数解析式;
(2)当年产量为多少千件时,该公司在这一品牌服装的生产中所获年利润最大?
(1)解不等式:;
(2)已知集合,
.若
,求实数
的取值组成的集合.
在△中,内角
所对的边分别为
,已知m
,n
,m·n
.
(1)求的大小;
(2)若,
,求△
的面积.
设函数,
,其中实数
.
(1)若,求函数
的单调区间;
(2)当函数与
的图象只有一个公共点且
存在最小值时,记
的最小值为
,求
的值域;
(3)若与
在区间
内均为增函数,求实数
的取值范围.