.设椭圆C:的左焦点为
,上顶点为
,过点
作垂直于
直线交椭圆
于另外一点
,交
轴正半轴于点
,
且
⑴求椭圆的离心率;
⑵若过三点的圆恰好与直线
相切,求椭圆C的方程.
已知函数.
(Ⅰ)求函数的极小值;
(Ⅱ)过点能否存在曲线
的切线,请说明理由.
已知椭圆C:的离心率为
,且C上任意一点到两个焦点的距离之和都为4.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线与椭圆交于P、Q,O为坐标原点,若
,求证
为定值.
有20名学生参加某次考试,成绩(单位:分)的频率分布直方图如图所示:
(Ⅰ)求频率分布直方图中的值;
(Ⅱ)分别求出成绩落在中的学生人数;
(Ⅲ)从成绩在的学生中任选2人,求所选学生的成绩都落在
中的概率.
如图,在底面为平行四边形的四棱锥中,
,
平面
,且
,点
是
的中点.
(Ⅰ)求证:平面
;
(Ⅱ)若,求点
到平面
的距离.
在中,内角
对边分别为
,且
.
(Ⅰ)求角的大小;
(Ⅱ)若,求
的值.