.(本小题满分14分)已知函数对任意实数
均有
,当
时,
是正比例函数,当
时,
是二次函数,且在
时
取最小值
。
(1)证明:;
(2)求出在
的表达式;并讨论
在
的单调性。
在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相等。
(1)求取出的两个球上标号为相邻整数的概率;
(2)求取出的两个球上标号之和能被3整除的概率.
如图,测量河对岸的塔高时,可以选与塔底
在同一水平面内的两个测点
.现测得
,并在点
测得塔顶
的仰角为
, 求塔高
(精确到
,
)
已知数列的前
项和为
,且
(
N*),其中
.
(Ⅰ) 求的通项公式;
(Ⅱ) 设(
N*).
①证明: ;
② 求证:.
已知各项都不为零的数列的前n项和为
,
,向量
,其中
N*,且
∥
.
(Ⅰ)求数列的通项公式及
;
(Ⅱ)若数列的前n项和为
,且
(其中
是首项
,第四项为
的等比数列的公比),求证:
.
汕头二中拟建一座长米,宽
米的长方形体育馆.按照建筑要求,每隔
米(
,
为正常数)需打建一个桩位,每个桩位需花费
万元(桩位视为一点且打在长方形的边上),桩位之间的
米墙面需花
万元,在不计地板和天花板的情况下,当
为何值时,所需总费用最少?