(本小题满分12分)已知某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为元/千克,每次购买配料需支付运费236元.每次购买来的配料还需支付保管费用,其标准如下: 7天以内(含7天),无论重量多少,均按10元/天支付;超出7天以外的天数,根据实际剩余配料的重量,以每天0.03元/千克支付.
(1)当9天购买一次配料时,求该厂用于配料的保管费用P是多少元?
(2)设该厂天购买一次配料,求该厂在这
天中用于配料的总费用
(元)关于
的函数关系式,并求该厂多少天购买一次配料才能使平均每天支付的费用最少?
一圆形纸片的半径为10cm,圆心为O,F为圆内一定点,OF=6cm,M为圆周上任意一点,把圆纸片折叠,使M与F重合,然后抹平纸片,这样就得到一条折痕CD,设CD与OM交于P点,如图
(1)求点P的轨迹方程;
(2)求证:直线CD为点P轨迹的切线.
已知点A、B的坐标分别是,
.直线
相交于点M,且它们的斜率之积为-2.
(Ⅰ)求动点M的轨迹方程;
(Ⅱ)若过点的直线
交动点M的轨迹于C、D两点, 且N为线段CD的中点,求直线
的方程.
已知抛物线的顶点为椭圆的中心.椭圆的离心率是抛物线离心率的一半,且它们的准线互相平行。又抛物线与椭圆交于点
,求抛物线与椭圆的方程.
求适合下列条件的双曲线的标准方程:
(1)焦点在 x轴上,虚轴长为12,离心率为 ;
(2)顶点间的距离为6,渐近线方程为.
已知函数(1)当a=4,
,求函数f(x)的最大值;(2)若x≥a , 试求f(x)+3 >0 的解集;(3)当
时,f(x)≤2x – 2 恒成立,求实数a的取值范围.