(本题满分14分)已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)若函数的图像在点
处的切线的倾斜角为
,问:
在什么范围取值时,对于任意的
,函数
在区间
上总存在极值?
(Ⅲ)当时,设函数
,若在区间
上至少存在一个
,使得
成立,试求实数
的取值范围.
一种电脑屏幕保护画面,只有符号“○”和“×”随机地反复出现,每秒钟变化一次,每次变化只出现“○”和“×”之一,其中出现“○”的概率为p,出现“×”的概率为q,若第k次出现“○”,则记;出现“×”,则记
,令
(I)当时,记
,求
的分布列及数学期望;
(II)当时,求
的概率.
如图,在直角坐标系中,已知椭圆
的离心率e=
,左右两个焦分别为
.过右焦点
且与
轴垂直的
直线与椭圆相交M、N两点,且|MN|=1.
(Ⅰ) 求椭圆的方程;
(Ⅱ) 设椭圆的左顶点为A,下顶点为B,动点P满足
,
()试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆
上.
已知数列满足:
且对任意的
有
.
(Ⅰ)求数列的通项公式
;
(Ⅱ)是否存在等差数列,使得对任意的
有
成立?证明你的结论
已知:。
(1)求的值;
(2)求的值。
已知复数,
,且
.
(Ⅰ)若且
,求
的值;
(Ⅱ)设=
,求
的最小正周期和单调增区间.