(本小题满分12分)
如图所示,某市准备在一个湖泊的一侧修建一条直路OC;另一侧修建一条观光大道,它的前一段OD是以O为顶点,x轴为对称轴,开口向右的抛物线的一部分,后一段DBC是函数时的图象,图象的最高点为
,垂足为F。
(I)求函数的解析式;
(II)若在湖泊内修建如图所示的矩形水上乐园PMFE,问点P落在曲线OD上何处时,水上乐园的面积最大?
(本小题满分12分)设数列的前
项和为
,点
在直线
上.
(1)求数列的通项公式;
(2)在与
之间插入
个数,使这
个数组成公差为
的等差数列,求数列
的前
项和
,并求使
成立的正整数
的最大值.
(本小题满分12分)在△ABC中,a,b,c分别为内角A,B,C的对边, 面积
(1)求角C的大小;
(2)设函数,求
的最大值,及取得最大值时角B的值.
(本小题满分12分)设命题“对任意的
”,命题
“存在
,使
”.如果命题
为真,命题
为假,求实数
的取值范围.
已知函数f(x)=lnx-mx(mR).
(1)若曲线y=f(x)过点P(1,-1),求曲线y=f(x)在点P处的切线方程;
(2)若f(x)0恒成立求m的取值范围.
(3)求函数f(x)在区间[1,e]上的最大值;
已知椭圆E的两个焦点分别为和
,离心率
.
(1)求椭圆E的方程;
(2)设直线与椭圆E交于A、B两点,线段AB的垂直平分线交x轴于点T,当m变化时,求△TAB面积的最大值.