(本小题满分14分)已知函数 ,
.
(Ⅰ)当 时,求函数
的最小值;
(Ⅱ)当 时,讨论函数
的单调性;
(Ⅲ)是否存在实数,对任意的
,且
,有
,恒成立,若存在求出
的取值范围,若不存在,说明理由。
(本小题满分15分)
若函数在
时取得极值,且当
时,
恒成立.
(1)求实数的值;
(2)求实数的取值范围.
(本小题满分14分)
已知椭圆,其左准线为
,右准线为
,抛物线
以坐标原点
为顶点,
为准线,
交
于
两点.
(1)求抛物线的标准方程;
(2)求线段的长度.
(本小题满分14分)
命题:函数
在
上是增函数;命题
:
,使得
.
(1)若命题“且
”为真,求实数
的取值范围;
(2)若命题“或
”为真,“
且
”为假,求实数
的取值范围.
已知梯形ABCD中,AD∥BC,∠ABC ="∠BAD" =,AB=BC=2AD=4,E、F分别是AB、CD上的点,且EF∥BC。设AE =
,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).
(1)当=2时,求证:BD⊥EG ;
(2)若以F、B、C、D为顶点的三棱锥的体积记为,求
的最大值;
(3)当取得最大值时,求二面角D-BF-E的余弦值.
如图,四棱锥的侧面
垂直于底面
,
,
,
在棱
上,
是
的中点,二面角
为
求
的值;