本题满分14分) 设函数在
上的导函数为
,
在
上的导函数为
.若在
上,有
恒成立,则称函数
在
上为“凸函数”.已知
.
(Ⅰ) 若为区间
上的“凸函数”,试确定实数
的值;
(Ⅱ) 若当实数满足
时,函数
在
上总为“凸函数”,求
的最大值.
请试着写出“用圆外切正多边形的周长逼近圆的周长的方法,求出圆周率π的近似值”的程序.
求90与36的最大公约数.
(本小题满分14分)
已知函数为常数)是实数集
上的奇函数,函数
在区间
上是减函数.
(1)求实数的值;
(2)若在
上恒成立,求实数
的取值范围;
(3)讨论关于的方程
的根的个数。
(本小题满分12分)
已知一非零向量列满足:
,
(1)证明:是等比数列;
(2)设,
,求
;
(3)设,问数列
中是否存在最小项?若存在,求出最小项;若不存在,请说明理由.
(本小题满分12分)
如图,椭圆经过点
,离心率
。
(l)求椭圆的方程;
(2)设直线与椭圆
交于
两点,点
关于
轴的对称点为
与
不重合),则直线
与
轴是否交于一个定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由。