(本小题满分14分)
已知椭圆C:=1(a>b>0)的离心率为
,短轴一个端点到右焦点的距离为3.
(1)求椭圆C的方程;
(2)过椭圆C上的动点P引圆O:的两条切线PA、PB,A、B分别为切点,试探究椭圆C上是否存在点P,由点P向圆O所引的两条切线互相垂直?若存在,请求出点P的坐标;若不存在,请说明理由.
(本小题满分14分)如图,在三棱锥中,
底面
,
点,
分别在棱
上,且
(1)求证:平面
;
(2)当为
的中点时,求
与平面
所成的角的正弦值;
(3)是否存在点使得二面角
为直二面角?并说明理由.
(本小题共14分)在四棱锥中,底面
是矩形,
平面
,
,
. 以
的中点
为球心、
为直径的球面交
于点
,交
于点
.
(1)求证:平面⊥平面
;
(2)求直线与平面
所成的角的正弦值.
(本小题满分12分)
如图,平行四边形中,
,
将
沿
折起到
的位置,使平面
平面
(1)求证:;
(2)求三棱锥的侧面积.
(本小题满分12分)
如图,在直三棱柱中,
、
分别是
、
的中点,点
在
上,
。
求证:(1)EF∥平面ABC;
(2)平面平面
.
(本小题满分14分)
如图已知△OPQ的面积为S,且.
(Ⅰ)若的取值范围;
|
(Ⅱ)设为中心,P为焦点的椭圆经过点Q,当m≥2时,求
的最小值,并求出此时的椭圆方程。