如图,椭圆的顶点为焦点为 S□ = 2S□.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线过(1,1),且与椭圆相交于两点,当是的中点时,求直线的方程.(Ⅲ)设为过原点的直线,是与n垂直相交于P点且与椭圆相交于两点的直线,,是否存在上述直线使以为直径的圆过原点?若存在,求出直线的方程;若不存在,请说明理由.
(1)已知角的顶点在原点,始边与x轴正半轴重合,终边为射线4x+3y=0(x≥0),求5sin-3 tan+2cos的值. (2)化简:.其中.
函数=的定义域为,集合=, (1)求:集合;(2)若,求的取值范围.
计算:⑴ ;⑵.
已知函数(,),. (Ⅰ)证明:当时,对于任意不相等的两个正实数、,均有成立; (Ⅱ)记,若在上单调递增,求实数的取值范围;
已知抛物线的顶点在坐标原点,焦点为,点是点关于轴的对称点,过点的直线交抛物线于两点。 (Ⅰ)试问在轴上是否存在不同于点的一点,使得与轴所在的直线所成的锐角相等,若存在,求出定点的坐标,若不存在说明理由。 (Ⅱ)若的面积为,求向量的夹角;
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号