已知椭圆的离心率
,过点
和
的直线与原点的距离为
.
(1)求椭圆的方程;
(2)设为椭圆的左、右焦点,过
作直线交椭圆于
两点,求
的内切圆半径
的最大值.
已知函数,
,
.
(1)求函数的极值;
(2)若在
上为单调函数,求
的取值范围.
(原创)如图,已知是正三角形,
,且
的中点.
(1)求证:;
(2)求四棱锥的全面积.
(原创)已知中,角
的对边分别为
,且有
.
(1)求角的大小;
(2)设向量,且
,求
的值.
从某校高三学生中抽取名学生参加数学竞赛,根据成绩(单位:分)的分组及各数据绘制的频率分布直方图如图所示,已知成绩的范围是区间[40, 100),且成绩在区间[70, 90)的学生人数是27人.
(1)求的值;
(2)若从数学成绩(单位:分)在[40,60)的学生中随机选取2人进行成绩分析,求至少有1人成绩在[40, 50)内的概率.