一个口袋中装有大小相同的2个白球和3个黑球。 (I)若采取放回抽样方式,每次摸出一球,从中摸出两球,求两球恰好颜色不同的概率; (II)若采取放回抽样方式,从中摸出两个球,求摸得白球的个数的分布列与均值。
在等比数列的前n项和中,最小,且,前n项和,求n和公比q
已知函数,求不等式的解集。
数列中,已知,时,.数列满足:. (1)证明:为等差数列,并求的通项公式; (2)记数列的前项和为,若不等式成立(为正整数).求出所有符合条件的有序实数对.
设椭圆: 的离心率为,点(,0),(0,)原点到直线的距离为。 (1) 求椭圆的方程; (2) 设点为(,0),点在椭圆上(与、均不重合),点在直线上,若直线的方程为,且,试求直线的方程.
设函数().区间 ,定义区间的长度为 b-a . (1)求区间I的长度(用 a 表示); (2)若,求的最大值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号