如图,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分别为PC、PB的中点.(1)求证:PB⊥DM;(2)求CD与平面ADMN所成角的正弦值.
在 △ A B C 中,角 A , B , C 的对边分别为 a , b , c , B = π 3 , cos A = 4 5 , b = 3 .
(Ⅰ)求 sin C 的值;
(Ⅱ)求 △ A B C 的面积.
已知实数列等比数列,其中成等差数列.(Ⅰ)求数列的通项公式;(Ⅱ)数列的前项和记为证明: <128…).
已知双曲线的离心率为,右准线方程为。(Ⅰ)求双曲线C的方程;(Ⅱ)已知直线与双曲线C交于不同的两点A,B,且线段AB的中点在圆上,求m的值.
设数列满足,. (Ⅰ)求数列的通项;(Ⅱ)设,求数列的前项和.
如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点。(Ⅰ)求证:AB1⊥面A1BD; (Ⅱ)求二面角A-A1D-B的大小; (Ⅲ)求点C到平面A1BD的距离;
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号