已知圆心角为120° 的扇形AOB半径为,C为
中点.点D,E分别在半径OA,OB上.若CD2+CE2+DE2=2,则OD+OE的最大值是 .
(本小题满分12分)
已知坐标平面上三点,
,
.
(1)若(O为坐标原点),求向量
与
夹角的大小;
(2)若,求
的值.
(本小题满分14分)
已知数列{an}中,a1="1" ,a2=3,且点(n,an)满足函数y = kx + b.
(1)求k,b的值,并写出数列{an}的通项公式;
(2)记,求数列{bn}的前n和Sn.
(本小题满分12分)
设函数,其中向量
,
,
,且
的图象经过点
.(1)求实数
的值;
(2)求函数的最小值及此时
值的集合.
(本小题满分12分)
不等式mx2-mx+1>0,对任意实数x都成立,求m的取值范围。
(本小题满分14分)
设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的nN+,都有
。
(1)写出数列{an}的前3项;
(2)求数列{an}的通项公式(写出推证过程);
(3)设,
是数列{bn}的前n项和,求使得
对所有n
N+都成立的最小正整数
的值。