游客
题文

如图,四棱锥中,底面为矩形,底面,且,,点中点.
(Ⅰ)若中点,证明://平面
(Ⅱ)若边上任一点,证明:
(Ⅲ)若,求直线与平面所成角的正弦值.

科目 数学   题型 解答题   难度 未知
登录免费查看答案和解析
相关试题

(本题满分12分) 已知二次函数满足,且关于的方程的两实数根分别在区间(-3,-2),(0,1)内。
(Ⅰ)求实数的取值范围;
(Ⅱ)若函数在区间(-1-1-)上具有单调性,求实数C的取值范围

(本题满分12分)已知椭圆W的中心在原点,焦点在轴上,离心率为,两条准线间的距离为6. 椭圆W的左焦点为,过左准线与轴的交点任作一条斜率不为零的直线与椭圆W交于不同的两点,点关于轴的对称点为.
(Ⅰ)求椭圆W的方程;
(Ⅱ)求证:();

(本题满分12分) 盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球. 规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得分 . 现从盒内任取3个球.
(Ⅰ)求取出的3个球颜色互不相同的概率;
(Ⅱ)求取出的3个球得分之和恰为1分的概率;
(Ⅲ)(文科) 求取出的3个球中白色球的个数为2个的概率
(Ⅲ)(理科)设为取出的3个球中白色球的个数,求的分布列和数学期望.

(本题满分12分)如图所示,四棱锥的底面为直角梯形,底面的中点.
(Ⅰ)求证:平面平面
(Ⅱ)求直线与平面所成的角;
(Ⅲ)求点到平面的距离.

(本题满分12分) 已知函数.
(Ⅰ)求的最小正周期;
(Ⅱ)求的对称轴方程;
(Ⅲ)求在区间上的最大值和最小值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号