已知函数.(1)求函数的单调递增区间;(2)记△的内角、、所对的边长分别为、、,若,△的面积,,求的值.
已知函数 (Ⅰ)判断的奇偶性. (Ⅱ)判断在内单调性并用定义证明; (Ⅲ)求在区间上的最小值.
给出集合A={-2,-1,,,,1,2,3}。已知a∈A,使得幂函数为奇函数,指数函数在区间(0,+∞)上为增函数。 (1)试写出所有符合条件的a,说明理由; (2)判断f(x)在(0,+∞)的单调性,并证明; (3)解方程:f[g(x)]=g[f(x)]。
已知的最大值为1,最小值为,求实数与的值。
已知 图象的一部分如图所示: (1)求的解析式;(2)写出的单调区间.
化简:(Ⅰ); (Ⅱ)
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号