设函数
(1)若关于x的不等式在
有实数解,求实数m的取值范围;
(2)设,若关于x的方程
至少有一个解,求p 的最小值.
(3)证明不等式:
(本小题满分12分)
一元二次方程的两个实数根为
和
.
(1) 求实数的取值范围;
(2) 求的取值范围及其最小值
(本小题满分14分)
如图,过抛物线的对称轴上任一点
作直线与抛物线交于
两点,点
是点
关于原点的对称点.
(1) 设点分有向线段
所成的比为
,证明:
;
(2) 设直线的方程是
,过
两点的圆
与抛物线在点
处有共同的切线,求圆
的方程.
(本小题满分14分)
已知奇函数有最大值
, 且
, 其中实数
是正整数.
求的解析式;
令, 证明
(
是正整数).
(本小题满分14分)
如图, 在四棱锥中,顶点
在底面
上的射影恰好落在
的中点
上,又∠
,
,且
=1:2:2.
(1) 求证:
(2) 若, 求直线
与
所成的角的余弦值;
(3) 若平面与平面
所成的角为
, 求
的值
(本小题满分14分)
设甲、已、丙三人每次射击命中目标的概率分别为0.7、0.6和0.5.
三人各向目标射击一次,求至少有一人命中目标的概率;
三人各向目标射击一次,求恰有两人命中目标的概率;
(3)若甲单独向目标射击三次,求他恰好命中两次的概率.