游客
题文

(本小题满分12分)已知直三棱柱中,,点上.

(1)若中点,求证:∥平面;
(2)当时,求二面角的余弦值.

科目 数学   题型 解答题   难度 中等
知识点: 平行线法
登录免费查看答案和解析
相关试题

李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立):

场次
投篮次数
命中次数
场次
投篮次数
命中次数
主场1
22
12
客场1
18
8
主场2
15
12
客场2
13
12
主场3
12
8
客场3
21
7
主场4
23
8
客场4
18
15
主场5
24
20
客场5
25
12

(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;
(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;
(3)记为表中10个命中次数的平均数,从上述比赛中随机选择一场,记为李明在这场比赛中的命中次数,比较的大小(只需写出结论)

如图,在 ABC 中, B= π 3 ,AB=8 ,点 D BC 边上,且 CD=2 cosABC= 1 7 .
(1)求 sinBAD
(2)求 BD AC 的长.

设实数 c > 0 ,整数 p > 1 , n N + .
(1)证明:当 x > - 1 x 0 时, ( 1 + x ) p > 1 + p x
(2)数列 { a n } 满足 a 1 > c 1 p , a n + 1 = p - 1 p a n + c p a n 1 - p ,证明: a n > a n + 1 > c 1 p .

如图,四棱柱 ABCD- A 1 B 1 C 1 D 1 中, A A 1 底面 ABCD .四边形 ABCD 为梯形, ADBC ,且 AD=2BC .过 A 1 ,C,D 三点的平面记为 α 的交点为 Q .
(1)证明: Q B B 1 的中点;
(2)求此四棱柱被平面 α 所分成上下两部分的体积之比;
(3)若 A 1 A=4,CD=2 ,梯形 ABCD 的面积为6,求平面 α 与底面 ABCD 所成二面角大小.

如图,已知两条抛物线 E 1 :y2=2 p 1 x( p 1 >0) E 2 :y2=2 p 2 x( p 2 >0) ,过原点 O 的两条直线 l 1 l 2 l 1 E 1 , E 2 分别交于 A 1 , A 2 两点, l 2 E 1 , E 2 分别交于 B 1 , B 2 两点.
(1)证明: A 1 B 1 A 2 B 2

(2)过原点 O 的直线 l (异于 l 1 l 2 )与 E 1 , E 2 分别交于 C 1 , C 2 两点.记 A 1 B 1 C 1 A 2 B 2 C 2 的面积分别为 S 1 S 2 ,求 S 1 S 2 的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号