(本小题满分14分)
如图①,已知四边形ABCD是正方形,点E是AB的中点,点F在边CB的延长线上,且BE=BF,连接EF.(1)若取AE的中点P,求证:BP=
CF;
(2)在图①中,若将
绕点B顺时针方向旋转
(00<
<3600),如图②,是否存在某位置,使得
?,若存在,求出所有可能的旋转角
的大小;若不存在,请说明理由;
(3)在图①中,若将△BEF绕点B顺时针旋转
(00<
<900),如图③,取AE的中点P,连接BP、CF,求证:BP=
CF且BP⊥CF.
某学校准备购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元.
(1)购买一个足球、一个篮球各需多少元?
(2)根据学校的实际情况,需购买足球和篮球共96个,并且总费用不超过5720元.问最多可以购买多少个篮球?
如图,∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并证明你的结论.
某学校对学生的课外阅读时间进行抽样调查,将收集的数据分成A、B、C、D、E五组进行整理,并绘制成如下的统计图表(图中信息不完整).
请结合以上信息解答下列问题
(1)求a、b、c的值;
(2)补全“阅读人数分组统计图”;
(3)估计全校课外阅读时间在20小时以下(不含20小时)的学生所占比例.
某超市开业十周年举行了店庆活动,对A、B两种商品实行打折出售.打折前,购买5件A商品和1件B商品需用84元;购买6件A商品和3件B商品需用108元.而店庆期间,购买3件A商品和8件B商品仅需72元,求店庆期间超市的折扣是多少?
如图,直线AB、CD、EF相交于点O,OG平分∠COF,∠1=30°,∠2=45°.求∠3的度数.