(本小题满分14分)
如图,椭圆
的顶点为
焦点为
S□
= 2S□
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线
过P(1,1),且与椭圆相交于A,B两点,当P是AB的中点时,求直线
的方程.
(Ⅲ)设n为过原点的直线,
是与n垂直相交于P点、与
椭圆相交于A,B两点的直线,
,是否存在上述直线
使以AB为直径的圆过原点?若存在,求出直线
的方程;若不存在,请说明理由.
( 10分)如图,四面体ABCD中,O、E分别是BD、BC的中点,CA=CB=CD=BD=2,AB=AD=
。
1)求证:AO
平面BCD;
2)求异面直线AB与CD所成角的余弦值;
3)求点E到平面ACD的距离。
( 9分)如图,过椭圆
的左焦点F任作一条与两坐标轴都不垂直的弦AB,若点M在x轴上,且使得MF为△AMB的一条内角平分线,则称点M为该椭圆的“左特征点”.求椭圆
的“左特征点”M的坐标;
(8分)在平行四边形ABCD中,AB=AC=1,∠ACD=90°,将它沿对角线AC折起,使AB和CD成60°角(见下图).求B、D间的距离
若f(x)=ax3+bx2,且f(x)在点P(-1,-2)处的切线恰好与直线3x-y=0垂直。(1)求a,b的值;(2)若f(x)在区间[0,m]上单调,求m的取值范围。
已知函数
。
(Ⅰ)讨论函数
的单调区间;
(Ⅱ)若
在
恒成立,求
的取值范围。