选修4—1:几何证明选讲
如图,是圆的内接四边形,
,过
点的圆的切线与
的延长线交于
点,证明:
(Ⅰ);
(Ⅱ).
(本小题共16分)
已知椭圆和圆
:
,过椭圆上一点
引圆
的两条切线,切点分别为
.
(1)①若圆过椭圆的两个焦点,求椭圆的离心率
; ②若椭圆上存在点
,使得
,求椭圆离心率
的取值范围;
(2)设直线与
轴、
轴分别交于点
,
,求证:
为定值.
((本小题满分14分)
如图:设工地有一个吊臂长的吊车,吊车底座
高
,现准备把一个底半径为
高
的圆柱形工件吊起平放到
高的桥墩上,问能否将工件吊到桥墩上?(参考数据:
)
(本小题满分14分)
如图,为圆
的直径,点
、
在圆
上,且
,矩形
所在的平面和圆
所在的平面互相垂直,且
,
.
(1)求证:平面
;
(2)设的中点为
,求证:
平面
;
(3)设平面
将几何体
分成的两个锥体的体积分别为
,
,
求
(本小题满分14分)
在△ABC中,分别为角A、B、C的对边,
,
="3," △ABC的面积为6
⑴求角A的正弦值;
⑵求边b、c;
(本小题满分12分)
如图,椭圆的顶点为
焦点为
S□ = 2S□
(1)求椭圆C的方程;
(2)设n 为过原点的直线,是与n垂直相交于P点、与椭圆相交于A,B两点的直线,
,
是否存在上述直线使
成立?若存在,求出直线
的方程;若不存在,请说明理由。