一袋子中有大小相同的2个红球和3个黑球,从袋子里随机取球,取到每个球的可能性是相同的,设取到一个红球得2分,取到一个黑球得1分。(Ⅰ)若从袋子里一次随机取出3个球,求得4分的概率;(Ⅱ)若从袋子里每次摸出一个球,看清颜色后放回,连续摸3次,求得分的概率分布列及数学期望。
已知点P到两个定点M(-1,0),N(1,0)的距离的比为。 (1)求证点P在一定圆上,并求此圆圆心和半径; (2)若点N到直线PM的距离为1,求直线PN的方程。
设 (1)若对任意的成立,求实数b的取值范围; (2)若存在成立,求实数b的取值范围。
设为数列的前n项和,,其中k是常数。 (Ⅰ)求; (Ⅱ)若对于任意的成等比数列,求k的值。
在△ABC中,已知边上的中线BD=, 求sinA的值。
已知函数(且). (Ⅰ)当时,求证:函数在上单调递增; (Ⅱ)若函数有三个零点,求t的值; (Ⅲ)若存在x1,x2∈[﹣1,1],使得,试求a的取值范围. 注:e为自然对数的底数。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号