一袋子中有大小相同的2个红球和3个黑球,从袋子里随机取球,取到每个球的可能性是相同的,设取到一个红球得2分,取到一个黑球得1分。
(Ⅰ)若从袋子里一次随机取出3个球,求得4分的概率;
(Ⅱ)若从袋子里每次摸出一个球,看清颜色后放回,连续摸3次,求得分的概率分布列及数学期望。
已知a≥b>0,求证:2a3-b3≥2ab2-a2b.
已知四棱锥P-ABCD的正视图是一个底边长为4,腰长为3的等腰三角形,如图分别是四棱锥P-ABCD的侧视图和俯视图.
(1)求证:AD⊥PC;
(2)求四棱锥P-ABCD的侧面PAB的面积.
设角A,B,C为△ABC的三个内角.
(1)设f(A)=sin A+2sin ,当A取A0时,f(A)取极大值f(A0),试求A0和f(A0)的值;
(2)当A取A0时,·
=-1,求BC边长的最小值.
如图,在几何体ABCDE中,AB=AD=2,AB⊥AD,AE⊥平面ABD,M为线段BD的中点,MC∥AE,且AE=MC=.
(1)求证:平面BCD⊥平面CDE;
(2)若N为线段DE的中点,求证:平面AMN∥平面BEC.
已知m=(2cos x+2sin x,1),n=(cos x,-y),且m⊥n.
(1)将y表示为x的函数f(x),并求f(x)的单调递增区间;
(2)已知a,b,c分别为△ABC的三个内角A,B,C对应的边长,若f=3,且a=2,b+c=4,求△ABC的面积.