已知中心在原点,焦点在轴上的椭圆,离心率,且经过抛物线的焦点.(1)求椭圆的标准方程;(2)若过点的直线(斜率不等于零)与椭圆交于不同的两点(在之间),与面积之比为,求的取值范围.
设函数(且)是定义域为R的奇函数. (Ⅰ)求t的值; (Ⅱ)若,求使不等式对一切R恒成立的实数k的取值范围; (Ⅲ)若函数的图象过点,是否存在正数m,使函数在上的最大值为0,若存在,求出m的值;若不存在,请说明理由.
已知函数. (Ⅰ)求的最小正周期及对称中心; (Ⅱ)若,求的最大值和最小值.
已知. (Ⅰ)求的值; (Ⅱ)求的值.
已知函数,. (Ⅰ)列表并画出函数在上的简图; (Ⅱ)若,,求.
求证:.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号