游客
题文

某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x,商场每天销售这种冰箱的利润是y元,请写出yx之间的函数表达式(不要求写自变量的取值范围);
(2)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?

科目 数学   题型 解答题   难度 中等
知识点: 一元二次方程的最值
登录免费查看答案和解析
相关试题

AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.

(1)若∠AOD=52°,求∠DEB的度数;
(2)若OC=3,OA=5,求AB的长.

列方程解应用题:
如图,有一块矩形纸板,长为20,宽为14,在它的四角各切去一个同样的正方形,然后将四周突出部分沿虚线折起;就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为160,那么纸板各角应切去边长为多大的正方形?

如图,Rt△ABC中,∠C=90°,∠A=30°,AB=2.

(1)用尺规作图,作出△ABC绕点A逆时针旋转60°后得到的AB1Cl(不写画法,保留图画痕迹);
结论:__________为所求.
(2)在(1)的条件下,连接B1C,求B1C的长.

下图是4×4的正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形.

如图,AB为⊙O的弦,AB=8,OC⊥AB于点D,交⊙O于点C,且CD=1,求⊙O的半径。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号