游客
题文

已知抛物线<1>求抛物线顶点M的坐标;
 <2>若抛物线与x轴的交点分别为点AB(点A在点B的左边),与y轴交于点C,点N为线段BM上的一点,过点Nx轴的垂线,垂足为点Q.当点N在线段BM上运动时(点N不与点B,点M重合),设NQ的长为t,四边形NQAC的面积为S,求St之间的函数关系式及自变量t的取值范围;
 <3>在对称轴右侧的抛物线上是否存在点P,使△PAC为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.

科目 数学   题型 解答题   难度 中等
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

如图,在平面直角坐标系中,已知点A、B、C的坐标分别为(-1,0),(5,0),(0,2)
求过A、B、C三点的抛物线解析式.
若点P从A点出发,沿x轴正方向以每秒1个单位长度的速度向B点移动,连接PC并延长到点E,使CE=PC,将线段PE绕点P顺时针旋转90°得到线段PF,连接FB.若点P运动的时间为t秒,(0≤t≤6)设△PBF的面积为S.
①求S与t的函数关系式.
②当t是多少时,△PBF的面积最大,最大面积是多少?
点P在移动的过程中,△PBF能否成为直角三角形?若能,直接写出点F的坐标;若不能,请说明理由.

、如图,一个直角三角形纸片的顶点A在∠MON的边OM上移动,移动过程中始终保持AB⊥ON于点B,AC⊥OM于点A.∠MON的角平分线OP分别交AB、AC于D、E两点.
点A在移动的过程中,线段AD和AE有怎样的数量关系,并说明理由.
点A在移动的过程中,若射线ON上始终存在一点F与点A关于OP所在的直线对称,判断并说明以A、D、F、E为顶点的四边形是怎样特殊的四边形?
若∠MON=45°,猜想线段AC、AD、OC之间有怎样的数量关系,并证明你的猜想.

某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:
设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?
(成本=进价×销售量)

小明家所在居民楼的对面有一座大厦AB,AB=米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C处测得大厦顶部A的仰角为37°,大厦底部B的俯角为48°.求小明家所在居民楼与大厦的距离CD的长度.(结果保留整数)(参考数据:

如图所示,AB是的直径,于点,且交于点,若
判断直线的位置关系,并给出证明;
时,求的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号