小明在复习数学知识时,针对“利用函数求一元二次方程的解”整理了以下几种方法,请你将有关内容补充完整:
例题:求一元二次方程的两个解。
(1)解法一:利用二次函数图象与两坐标轴的交点求解。
如图,把方程的解看成是二次函数
__________的图象与
轴交点的横坐标,即
,
就是方程的解。
(2)解法二:利用两个函数图象的交点求解。
①把方程的解看成是二次函数
_________的图象与一个一次函数
_________的图象交点的横坐标。
②画出这两个函数的图象,用,
在
轴上标出方程的解。
在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行
销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)于销售单价x(元
/个)之间的对应关系如图所示.
(1)试判断y与x之间的函数关系,并求出函数关系式;
(2)若许愿瓶的进价为6元/个,按照上述市场调查销售规律,求利润w(元)与销售单价x(元/个)之间的
函数关系式;
(3)若许愿瓶的进货成本不超过900元,要想获得最大利润,试求此时这种许愿瓶的销售单价,并求出
最大利润.
如图,四边形ABCD的对角线AC、BD交于点O,BE⊥AC于E,DF⊥AC于
F,点O既是AC的中点,又是EF的中点.
(1)求证:△BOE≌△DOF;
(2)若OA=BD,则四边形ABCD是什么特殊四边形?请说明理由.
如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22º时,
教学楼在建筑物的墙上留下高2m的影子CE;而当光线与地面的夹角是45º时,教学楼顶A在地面上的影
子F与墙角C有13m的距离(B、F、C在一条直线上).
(1)求教学楼AB的高度;
(2)学校要在A、E之间挂一些彩旗,请你求出A、E之间的距离(结果保留整数).
(参考数据:sin22º≈,cos22º≈
,tan22º≈
)
小丽乘坐汽车从青岛到黄岛奶奶家,她去时经过环湾高速公路,全程约84km,
返回时经过跨海大桥,全程约45km.小丽所乘汽车去时的平均速度是返回时的1.2倍,所用时间却比返回
时多20min.求小丽所乘汽车返回时的平均速度.
某商场为了吸引顾客,举行抽奖活动,并规定:顾客每购买100元的商品,就
可以随机抽取一张奖券,抽得奖券“紫气东来”、“化开富贵”、“吉星高照”,就可以分别获得100元、50元、
20元的购物券,抽得“谢谢惠顾”不赠购物券;如果顾客不愿意抽奖,可以直接获得购物券10元,小明购
买了100元的商品,他看到商场公布的前10000张奖券的抽奖结果如下:
奖券种类 |
紫气东来 |
化开富贵 |
吉星高照 |
谢谢惠顾 |
出现张数(张) |
500 |
1000 |
2000 |
6500 |
(1)求“紫气东来”奖券出现的频率;
(2)请你帮助小明判断,抽奖和直接获得购物券,哪种方式更合算?说明理由.