将直线向左平移2个单位后得到直线l,若直线l与反比例函数
的图象的交点为(2,-m).
求直线l的解析式及直线l与两坐标轴的交点;
求反比例函数的解析式.
(本题12分)如图,抛物线与x轴交A、B两点(A点在B点左侧),直线
与抛物线交于A、C两点,其中C点的横坐标为2.
(1)求A、B两点的坐标及直线AC的函数表达式;
(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,连接EA,EC,求△ACE面积最大值;
(3)点G是抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的F点坐标;如果不存在,请说明理由.
(本题10分)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.
(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?
(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.
(本题10分)如图,△ABC中,AB=AC,以AC为直径的⊙O与边BC交于点E.过E作直线与AB垂直,垂足为F,且与AC的延长线交于点G.
(1)判断直线FG与⊙O的位置关系,并证明你的结论;
(2)若BF=1,CG=2,求⊙O半径.
(本题10分)如图,一次函数的图象与坐标轴分别交于A、B两点,与反比例函数
的图象在第二象限的交点为C,CD⊥x轴,垂足为D,若OB=2,OD=4,△AOB的面积为1.
(1)求一次函数与反比例的表达式;
(2)直接写出当时,
的解集.
(本题8分)某地为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地决策,自来水公司随机抽取部分用户的用水量数据,并绘制了如下不完整统计图(每组数据包括右端点但不包括左端点),请你根据统计图解决下列问题:
(1)此次调查抽取了多少用户的用水量数据?
(2)补全频数分布直方图,求扇形统计图中“25吨~30吨”部分的圆心角度数;
(3)如果自来水公司将基本用水量定为每户25吨,那么该地20万用户中约有多少用户的用水全部享受基本价格?