若cos(-a)-cos(2p-a)=
,a是第二象限的角,则tana=____________
已是抛物线
上的一点,过
点的切线方程的斜率可通过如下方式求得:在
两边同时对x求导,得:
,所以过
的切线的斜率:
,试用上述方法求出双曲线
在
处的切线方程为___________.
下列命题中:①函数的最小值是
;②对于任意实数
,有
且
时,
,
,则
时,
;③如果
是可导函数,则
是函数
在
处取到极值的必要不充分条件;④已知存在实数
使得不等式
成立,则实数
的取值范围是
。其中正确的命题是___________.
若函数在
处取极值,则
__________.
已知x,y的取值如下表:
x |
0 |
1 |
3 |
4 |
y |
2.2 |
4.3 |
4.8 |
6.7 |
从散点图可以看出y与x线性相关,且回归方程为,则
___________.