(本题满分12分)如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB。
(1) 求证:CE⊥平面PAD;
(11)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P-ABCD的体积
在平面直角坐标系中,已知直线
被圆[
截得的弦长为
(Ⅰ)求圆的方程
(II)设圆和
轴相交于
,
两点,点
为圆
上不同于
,
的任意一点,直线
,
交
轴于
,
两点.当点
变化时,以
为直径的圆
是否经过圆
内一定点?请证明你的结论
已知圆C过点(4,-1),且与直线相切于点
.
(Ⅰ)求圆C的方程;
(II)是否存在斜率为1的直线l,使得l被圆C截得弦AB,以AB为直径的圆经过原点,若存在,求出直线的方程;若不存在,请说明理由.
已知圆以
为圆心且经过原点O,与
轴交于另一点A,与
轴交于另一点B.
(Ⅰ)求证:为定值
(Ⅱ) 若直线与圆
交于点
,若
,求圆
的方程.
本题满分10分)如图,在长方体-
中,
分别是
,
的中点,
分别是
,
中点,
(Ⅰ)求三棱锥的体积;
(Ⅱ)求证:
已知直线经过直线
与直线
的交点
,且垂直于直线
.
(Ⅰ)求直线的方程;
(Ⅱ)求直线与两坐标轴围成的三角形的面积
.