游客
题文

某同学用《几何画板》研究抛物线的性质:打开《几何画板》软件,绘制某抛物线,在抛物线上任意画一个点,度量点的坐标,如图.

(Ⅰ)拖动点,发现当时,,试求抛物线的方程;
(Ⅱ)设抛物线的顶点为,焦点为,构造直线交抛物线于不同两点,构造直线分别交准线于两点,构造直线.经观察得:沿着抛物线,无论怎样拖动点,恒有.请你证明这一结论.
(Ⅲ)为进一步研究该抛物线的性质,某同学进行了下面的尝试:在(Ⅱ)中,把“焦点”改变为其它“定点”,其余条件不变,发现“不再平行”.是否可以适当更改(Ⅱ)中的其它条件,使得仍有“”成立?如果可以,请写出相应的正确命题;否则,说明理由.

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

设函数,且以为最小正周期.
(1)求
(2)求的解析式;
(3)已知,求的值.

已知圆C与两坐标轴都相切,圆心C到直线的距离等于.
(1)求圆C的方程.
(2)若直线与圆C相切,求的最小值.

在锐角△中,分别为角所对的边,且
(1)确定角的大小;
(2)若,且△的面积为,求的值.

已知双曲线的右顶点为A,右焦点为F,右准线与轴交于点B,且与一条渐近线交于点C,点O为坐标原点,,过点F的直线与双曲线右支交于点
(Ⅰ)求此双曲线的方程;
(Ⅱ)求面积的最小值.

如图,平面AEB,,,G是BC的中点.

(Ⅰ)求证:
(Ⅱ)求二面角的大小.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号