已知:如图,抛物线与
轴交于点
,点
,与直线
相交于点
,点
,直线
与
轴交于点
.
(1)求
的面积.
(2)若点
在线段
上以每秒1个单位长度的速度从
向
运动(不与
重合),同时,点
在射线
上以每秒2个单位长度的速度从
向
运动.设运动时间为
秒,请写出
的面积
与
的函数关系式,并求出点
运动多少时间时,
的面积最大,最大面积是多少?
(6 分)已知:如图,在四边形ABCD 中,AB ∥ CD,E,F 为对角线AC 上两点,且AE=CF,DF∥BE.求证:四边形ABCD 为平行四边形.
已知A,B两件服装的成本共500元,鑫洋服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130 元,问A,B两件服装的成本各是多少元?
解不等式组:.
平面上,矩形ABCD与直径为QP的半圆K如图摆放,分别延长DA和QP交于点O,且∠BOQ=60°,OQ=OD=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向形如旋转,设旋转角为α(0°≤α≤60°).
发现(1)当α=0°,即初始位置时,点P____直线AB上.(填“在”或“不在”)求当α是多少时,OQ经过点B?
(2)在OQ旋转过程中.简要说明α是多少时,点P,A间的距离最小?并指出这个最小值:
(3)如图,当点P恰好落在BC边上时.求α及S阴影.
拓展如图.当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x的代数式表示BN的长,并求x的取值范围.
探究当半圆K与矩形ABCD的边相切时,求sin α的值.
如图,已知点O(0,0),A(-5,0),B(2,1),抛物线l:y=-(x-h)2+1(h为常数)与y轴的交点为C.
(1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标:
(2)设点C的级坐标为yc,求yc的最大值,此时l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y1的大小;
(3)当线段OA被l只分为两部分,且这两部分的比是1:4时,求h的值.