游客
题文

如图,有一块含的直角三角板的直角边长的长恰与另一块等腰直角三角板的斜边的长相等,把该套三角板放置在平面直角坐标系中,且.
若双曲线的一个分支恰好经过点,求双曲线的解析式;
若把含的直角三角板绕点按顺时针方向旋转后,斜边恰好与轴重叠,点落在点,试求图中阴影部分的面积(结果保留).

科目 数学   题型 解答题   难度 较易
知识点: 平行线分线段成比例 圆幂定理
登录免费查看答案和解析
相关试题

使得函数值为零的自变量的值称为函数的零点。例如,对于函数,令y=0,可得x=1,我们就说1是函数的零点。
己知函数(m为常数)。
(1)当=0时,求该函数的零点;
(2)证明:无论取何值,该函数总有两个零点;
(3)设函数的两个零点分别为,且,此时函数图象与x轴的交点分别为A、B(点A在点B左侧),点M在直线上,当MA+MB最小时,求直线AM的函数解析式。

如图1至图4中,两平行线AB、CD间的距离均为6,点M为AB上一定点.

思考:
如图1,圆心为0的半圆形纸片在AB,CD之间(包括AB,CD),其直径MN在AB上,MN=8,点P为半圆上一点,设∠MOP=α。
当α=  度时,点P到CD的距离最小,最小值为  
探究一:
在图1的基础上,以点M为旋转中心,在AB,CD 之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图2,得到最大旋转角∠BMO=  度,此时点N到CD的距离是  
探究二:
将如图1中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP绕点M在AB,CD之间顺时针旋转。
(1)如图3,当α=60°时,求在旋转过程中,点P到CD的最小距离,并请指出旋转角∠BMO的最大值;
(2)如图4,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的最大值。

如图,在梯形ABCD中,AB∥CD,∠BAD=90°,以AD为直径的半圆D与BC相切。

(1)求证:OB⊥OC;
(2)若AD=12,∠BCD=60°,⊙O1与半⊙O外切,并与BC、CD相切,求⊙O1的面积。

关于的一元二次方程x2+2x+k+1=0的实数解是x1x2
(1)求k的取值范围;
(2)如果x1+x2-x1x2<-1且k为整数,求k的值。

将两块大小相同的含30°角的直角三角板(∠BAC=∠BAC=30°)按图①方式放置,固定三角板ABC,然后将三角板ABC绕直角顶点C顺时针方向旋转(旋转角小于90°)至图②所示的位置,ABAC交于点EACAB′交于点FABAB′相交于点O

(1)求证:△BCE≌△BCF
(2)当旋转角等于30°时,求证:AB⊥A′B′

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号