游客
题文

如图1,正方形ABCD和正方形QMNP,∠M =∠B,M是正方形ABCD的对称中心,MN交AB于F,QM交AD于E.
求证:ME = MF.
如图2,若将原题中的“正方形”改为“菱形”,其他条件不变,探索线段ME与线段MF的关系,并加以证明.
如图3,若将原题中的“正方形”改为“矩形”,且AB = mBC,其他条件不变,探索线段ME与线段MF的关系,并说明理由.
根据前面的探索和图4,你能否将本题推广到一般的平行四边形情况?若能,写出推广命题;若不能,请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 圆内接四边形的性质
登录免费查看答案和解析
相关试题

推理填空,如图
1、如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.

解:∵∠A=∠F(已知)
∴AC∥DF()
∴∠D=∠( )
又∵∠C=∠D(已知)
∴∠1=∠C(等量代换)
∴BD∥CE( )

作图题(尺规作图,不写作法,但保留作图痕迹)
如图,已知,∠α 、∠β。

求作∠AOB,使∠AOB =2∠α+∠β,

先化简,再求值:,其中

正方形ABCD中,E点为BC中点,连接AE,过B点作BFAE,交CDF点,交AEG点,连接GD,过A点作AHGDGDH点.

(1) 求证:△ABE≌△BCF
(2) 若正方形边长为4,AH =,求△AGD的面积.

如图,直角梯形ABCD中,ADBC,∠A=90°,ABAD=6,DEDCABEDF平分∠EDCBCF,连接EF

(1) 证明:EFCF
(2) 当AE=2时,求EF的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号